Get a Demo

Let's Patch It!

Book a short call with one our specialists, we'll walk you through how Endor Patches work, and ask you a few questions about your environment (like your primary programming languages and repository management). We'll also send you an email right after you fill out the form, feel free to reply with any questions you have in advance!

CVE

CVE-2025-7783

form-data uses unsafe random function in form-data for choosing boundary
Back to all
CVE

CVE-2025-7783

form-data uses unsafe random function in form-data for choosing boundary

Summary

form-data uses Math.random() to select a boundary value for multipart form-encoded data. This can lead to a security issue if an attacker:

  1. can observe other values produced by Math.random in the target application, and
  2. can control one field of a request made using form-data

Because the values of Math.random() are pseudo-random and predictable (see: https://blog.securityevaluators.com/hacking-the-javascript-lottery-80cc437e3b7f), an attacker who can observe a few sequential values can determine the state of the PRNG and predict future values, includes those used to generate form-data's boundary value. The allows the attacker to craft a value that contains a boundary value, allowing them to inject additional parameters into the request.

This is largely the same vulnerability as was recently found in undici by parrot409 -- I'm not affiliated with that researcher but want to give credit where credit is due! My PoC is largely based on their work.

Details

The culprit is this line here: https://github.com/form-data/form-data/blob/426ba9ac440f95d1998dac9a5cd8d738043b048f/lib/form_data.js#L347

An attacker who is able to predict the output of Math.random() can predict this boundary value, and craft a payload that contains the boundary value, followed by another, fully attacker-controlled field. This is roughly equivalent to any sort of improper escaping vulnerability, with the caveat that the attacker must find a way to observe other Math.random() values generated by the application to solve for the state of the PRNG. However, Math.random() is used in all sorts of places that might be visible to an attacker (including by form-data itself, if the attacker can arrange for the vulnerable application to make a request to an attacker-controlled server using form-data, such as a user-controlled webhook -- the attacker could observe the boundary values from those requests to observe the Math.random() outputs). A common example would be a x-request-id header added by the server. These sorts of headers are often used for distributed tracing, to correlate errors across the frontend and backend. Math.random() is a fine place to get these sorts of IDs (in fact, opentelemetry uses Math.random for this purpose)

PoC

PoC here: https://github.com/benweissmann/CVE-2025-7783-poc

Instructions are in that repo. It's based on the PoC from https://hackerone.com/reports/2913312 but simplified somewhat; the vulnerable application has a more direct side-channel from which to observe Math.random() values (a separate endpoint that happens to include a randomly-generated request ID). 

Impact

For an application to be vulnerable, it must:

  • Use form-data to send data including user-controlled data to some other system. The attacker must be able to do something malicious by adding extra parameters (that were not intended to be user-controlled) to this request. Depending on the target system's handling of repeated parameters, the attacker might be able to overwrite values in addition to appending values (some multipart form handlers deal with repeats by overwriting values instead of representing them as an array)
  • Reveal values of Math.random(). It's easiest if the attacker can observe multiple sequential values, but more complex math could recover the PRNG state to some degree of confidence with non-sequential values. 

If an application is vulnerable, this allows an attacker to make arbitrary requests to internal systems.

Package Versions Affected

Package Version
patch Availability
No items found.

Automatically patch vulnerabilities without upgrading

Fix Without Upgrading
Detect compatible fix
Apply safe remediation
Fix with a single pull request

CVSS Version

Severity
Base Score
CVSS Version
Score Vector
C
H
U
-
C
H
U
-
C
H
U
-

Related Resources

No items found.

References

Severity

7.4

CVSS Score
0
10

Basic Information

Ecosystem
Base CVSS
7.4
EPSS Probability
0.00172%
EPSS Percentile
0.38968%
Introduced Version
0.0.2
Fix Available
2.5.4

Fix Critical Vulnerabilities Instantly

Secure your app without upgrading.
Fix Without Upgrading